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FUTURE CLIMATE PROJECTIONS FOR COASTAL NSW 
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Abstract 

NARCliM (NSW/ACT Regional Climate Modelling project) is a regional climate 
modelling project for southeastern Australia produced in a collaboration between the 
NSW Office of Environment and Heritage (OEH) and the University of New South 
Wales (UNSW). It will provide a comprehensive dynamically downscaled climate 
dataset for South-East Australia at a resolution of 10km. NARCliM data will be used by 
the NSW and ACT governments to design their climate change adaptation plans. OEH 
will be making the NARCliM data available to the public in 2015. 

NARCliM uses WRFv3.3 regional climate model (RCM) to perform an ensemble of 
simulations for the present (1990-2009) and the projected future climate (2020-2039 
and 2060-2079). WRF is run in three different model configurations (different 
combinations of physical parameterizations) that have been shown to perform well in 
South-East Australia and were chosen based on performance and independence. We 
use four GCMs (MIROC-medres 3.2, ECHAM5, CGCM 3.1 and CSIRO mk3.0) from 
the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison 
Project phase 3 (CMIP3) multi-model dataset as initial and boundary conditions for the 
WRF simulations. These GCMs were chosen through a process that considered model 
performance, independence and projected future changes. Thus an ensemble of 12 
simulations for each period was obtained. In addition, each RCM is run for the period 
1950-2009 forced by NCEP/NCAR reanalysis.  

The 10km resolution allows the eastern seaboard of NSW to be resolved and climate 
projections to be of direct relevance to coastal NSW. While future sea level rise is a 
significant impact of climate change, future changes in coastal precipitation, winds and 
temperatures may be just as important. In this talk, we will present the NARCliM 
projected changes in these climate variables of most relevance for coastal NSW. 

Introduction 

Future climate change has been recognised as one of the largest issues facing the 
world in the coming century. The Intergovernmental Panel on Climate Change (IPCC) 
has been tasked with compiling the state of knowledge in relation to climate change on 
a regular basis. To date they have produced five such. These assessments are the 
basis of knowledge used by most governments to establish climate change related 
policy, including the ongoing debates around the introduction of a price on greenhouse 
gas emissions. 

Global Climate Models (GCMs) are the main tools used to project the extent of future 
climate change. The Coupled Model Intercomparison Project 3 (CMIP3, Meehl et al., 
2007) was the international collaborative effort of GCM groups to produce projections 
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that directly informed the IPCC fourth assessment report (IPCC, 2007). This database 
of global climate projections has been widely used to investigate global climate system 
processes (e.g. Diffenbaugh et al., 2008; de Szoeke and Xie, 2008) as well as large 
scale climate change projections (Marriotti et al., 2008; Evans, 2009; Vavrus et al., 
2009; Evans 2010). This construction of a multi-GCM ensemble is vital for dealing with 
the uncertainty associated with future projections. Every GCM, which performs 
adequately for the recent past, provides a plausible projection of future climate and it is 
difficult to know which of these plausible futures is more likely. Hence the use of a 
multi-model ensemble is required to provide some measure of likelihood of the 
projected future climate. 

As the risks associated with large scale climate change have become better 
understood, more impact and adaptation studies have been performed. A significant 
spatial scale problem exists between the scale of the processes that GCMs can 
represent (larger than about 300km) and the scales of interest for impacts and 
adaptation studies which are often only tens of kilometres or less. In order to address 
this spatial scale problem various methods have been developed to downscale the 
GCM output. These downscaling methods can be generalised into two types: statistical 
and dynamical. Statistical downscaling involves deriving statistical relationships 
between some large scale predictors and a local variable of interest. An example would 
be to use the GCM predicted mean sea level pressure or 500hPa geopotential height 
to predict precipitation at a station location. It is then assumed that this statistical 
relationship remains true in a future changed climate and hence can be used to 
downscale both the present and the future climate. Dynamical downscaling uses 
mathematical representations of the physical processes that create the climate system, 
similar to GCMs, applied at a higher spatial resolution than the GCMs. In this way they 
are able to capture climate phenomena not resolved by the GCMs including the 
influence of mountains, coastlines and local land-atmosphere feedbacks (Zaitchik et 
al., 2007a,b). Dynamical downscaling is done with a Regional Climate Model (RCM). 
When downscaling future climate projections RCMs assume that the physical laws 
remain the same. Statistical downscaling techniques can also be applied to RCM 
output in order to provide information at point locations. 

One advantage of statistical techniques is that they are less computationally intensive 
and hence can be used to downscale many GCM (or RCM) climate projections. This 
allows the statistical techniques to be applied to many climate models and hence they 
can span the range of plausible future climates. RCMs, on the other hand, are quite 
computationally intensive. To date this has prevented them from being used to 
downscale many GCMs, hence they have not sampled the full range of plausible future 
climates. This issue has been addressed in a number of large international projects 
focused on Europe (PRUDENCE - Christensen and Christensen (2007), ENSEMBLES 
- van der Linden and Mitchell (2009)) and North America (NARCAP - Mearns et al. 
(2009)) that produced large ensembles of RCM simulations. PRUDENCE was the first 
attempt to produce a RCM ensemble through a large cooperative international 
program. In this case several RCMs were used to downscale the same GCM thus 
providing a measure of the uncertainty associated with RCM simulations but not 
placing this within the context of plausible future climates simulated by GCMs (Deque 
et al., 2005). Both ENSEMBLES in Europe and NARCAP in North America have 
attempted to address this issue by using a collection of RCMs to downscale a 
collection of GCMs. While these projects have found significant spread amongst the 
RCMs it has generally been smaller than the spread found in the full GCM ensemble 
(Fowler et al., 2007). Thus, an emphasis on sampling the GCM ensemble more 
comprehensively has been recommended (Kendon et al., 2010).  
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Uncertainty about future climate projections comes from several sources. Here these 
sources of uncertainty are broken down into three main categories, a different but 
similar way to categorise these sources of uncertainty can be found in Foley (2010). 
The first source, and one of the largest unknowns, is the future emissions of 
greenhouse gases and aerosols. Since this uncertainty is impossible to quantify 
mathematically, it is presented as a series of possible emission scenarios or 
projections. These scenarios are then used in GCM simulations to study the impact on 
climate.  

The second and the third sources of uncertainty deal with the response of the physical 
system to the increase in greenhouse gases and aerosols. Specifically, the second 
source is a large scale response to changes in atmospheric constituents. It can be 
sampled by using different GCM (“model structural uncertainty”), and different 
parametrizations within a single GCM (“model parametric uncertainty”). The third 
source is a local response given a large-scale response. In the case of RCMs this 
includes the uncertainty in model physics and structure similar to issues associated 
with GCMs, while for statistical downscaling this includes uncertainties associated with 
the statistical technique used. In combination these sources of uncertainty provide a 
limit to the confidence that can be placed in any particular projection of future regional 
climate. 

Quantifying this uncertainty is done by creating a collection, or ensemble, of climate 
simulations that sample various parts of the uncertainty described above. Emission 
scenario uncertainty is addressed by running simulations from more than one scenario. 
To quantify the structural uncertainty associated with GCMs an ensemble of many 
GCMs should be used and similarly for RCMs (or dynamical downscaling) many RCMs 
should also be used. Ideally these GCMs and RCMs would be independent of each 
other ensuring they are sampling different parts of the plausible future climate space. 
Once an ensemble sampling these uncertainties has been established there are 
multiple methods for combining the information to establish a probabilistic future 

Figure 1: AustralAsia domain and topography. The red rectangle outlines the 

high resolution south-east Australia NARCliM domain. 
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climate change prediction. Déqué and Somot (2010) used a technique that weighs a 
frequency distribution based on model performance. Bayesian analysis has also been 
used in a number of ways (Tebaldi et al., 2004,2005; Buser et al., 2010) and is an area 
of active research. 

NARCliM Project Plan 

The NARCliM ensemble has been designed to produce 12 regional climate model 
simulations (Evans et al, 2014). Twelve RCM runs were selected as a minimum 
number of runs to improve the probability of capturing the range of possible future 
climates. The process of developing the 12 RCMs first included the selection of the 
GCMs that were to be downscaled. The project was run using four independent GCMs 
to provide the boundary conditions for three RCM simulations each, for a total of 12 
runs. The GCM selection process included evaluation of GCM performance in 
simulating actual climate for South-East Australia. Other criteria were that the model 
estimates of future climate should be independent and span the range of future climate 
change projections from the full CMIP3 GCM ensemble. The second step involved 
selecting the RCMs to perform the downscaling. The RCMs chosen are three most 
independent configurations of the Weather Research and Forecasting (WRF) model 
that have been shown to perform well over the region across a range of time scales 
(Evans et al. 2012; Evans and Westra, 2012; Evans and McCabe, 2013). 

Three 20 year simulations were performed with each of the 12 GCM/RCM 
combinations, for the present day (1990-2010) and two future periods, 2020-2040 and 
2060-2080. In addition to the GCM driven simulations, another set of the RCM runs 

 

Figure 2: Projected future changes in ensemble mean 2m temperature (2070 - 
2000). 
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used boundary conditions from NCEP/NCAR reanalysis to produce long (60-year, 
1950-2009) historical simulations. The NARCliM domain is shown in Figure 1. The 
large outer domain has a ~50km resolution while the inner high resolution domain has 
a ~10km resolution. The resolution is chosen in order to capture important local land-
atmosphere coupling feedbacks (Evans et al. 2011).  

Results 

Here projected future changes from the present-day period of 1990-2009 (referred to 
as 2000) to the future period of 2060-2079 (referred to as 2070) are shown. The 
changes in mean temperature (Figure 2) indicate that generally the land warms more in 
spring and summer than autumn and winter. In summer this warming generally leads to 
an increase in the land-sea temperature gradient, while in winter there is generally a 
decrease. Over the Tasman Sea the strongest warming occurs in the south, particularly 
in spring and summer. This southern Tasman Sea warming is amongst the largest 
projected in any non-Arctic ocean.  

Projected changes in precipitation are shown in Figure 3. On an annual basis, most of 
coastal NSW is projected to see only small changes. However, this masks some larger 
seasonal changes with much of the coast likely to experience increases in precipitation 
in summer and autumn, and decreases or little change in winter and spring. The 
changes along the northern NSW coast are dominated by likely increases in summer 
and autumn, while the southern NSW coast is projected to see a decrease in spring. 
Figure 4 shows the spring (SON) rainfall change for each individual model giving an 
example of the variability that can be found between models. 

Figure 3: Projected future changes in the ensemble mean precipitation (2070-
2000). 
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In this case 9 (or 10) of the 12 models project a decrease on the south coast in spring 
while the remaining project little or no change. 

 

Figure 4: Spring (SON) precipitation changes for each of the ensemble 
members. 
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The mean seasonal wind speed at 10 meters for the region is shown in Figure 5. 
Clearly the ocean winds tend to be stronger than the winds over land, and are 
strongest in winter in the southern Tasman Sea. On the northern NSW coast the winds 
tend to be stronger in spring and summer, while for the southern NSW coast they are 
much stronger in winter followed by spring. The projected future changes in these 
winds are shown in Figure 6. No change or small decreases in wind speed are 

Figure 6: Projected future changes in the ensemble mean 10m wind speed (2070-
2000). 

Figure 5: Present-day ensemble mean 10m wind speed. 
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generally projected throughout the region except for winter when the southern Tasman 
Sea is projected to experience an increase in the mean maximum wind speed.  

Next we investigate changes in maximum wind speeds as these are often associated 
with coastal impacts. Figure 7 shows the present-day ensemble seasonal mean 

Figure 5: Present-day ensemble mean maximum 10m wind speed. 

Figure 6: Projected future changes in the ensemble mean maximum 10m wind 

speed (2070-2000). 
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maximum wind speed. That is, the mean of the maximum recorded wind speed in that 
season, in each of the 20 years. Again, much higher wind speeds are found over the 
Tasman Sea than over land, however the area with the highest maximums is not 
confined to the southern Tasman as it is for the mean winds. On land it can be seen 
that the southern NSW coast experiences notably higher maximum wind speeds 
compared to the northern coast, particularly in winter and spring. Future changes in 
these maximum wind speeds are shown in Figure 8. In summer, increases in maximum 
wind speeds are found in the northern Tasman Sea and along much of the NSW coast 
(especially the north). In winter the largest increases occur in the southern Tasman 
Sea, though only the southernmost coastline is affected by these increases. In all 
seasons other than summer, most of the NSW coast is projected to see little change or 
decreases in maximum wind speeds.  

Conclusions 

By modelling the regional climate at 10km resolution the NARCliM regional climate 
projections are able to provide significant detail to future climate changes for coastal 
NSW. This detail can be largely attributed to better resolving the coastline and nearby 
mountain ranges, as well as small-scale processes captured by RCMs but unresolved 
in coarse resolution models. Projected changes include: temperature increases of more 
than 2ºC in summer but less than this in winter; precipitation increases particularly on 
the northern coast in summer and autumn, and decreases on the southern NSW coast 
in spring; small decreases in mean wind speed; and increases in maximum wind 
speeds in summer but decreases in other seasons. In all cases we have reported the 
ensemble mean changes here. The variability within the ensemble provides a measure 
of the confidence level associated with these changes and should be considered 
together with the ensemble mean change. 
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